摘要:减速器是各类机械设备中广泛使用的传动装置。其主要特点为传递功率大、制造简单、维修方便和使用寿命长等优点。传统的减速器设计一般通过反复的试凑、校核确定设计方案,虽然也能获得满足给定条件的设计方案,实践证明,按照传统设计方法作出的设计方案,大部分都有改进的余地,不是最佳方案。
本文将对二级圆柱齿轮减速器进行优化设计。考虑到以中心距最小为目标,在此采用了惩罚函数法。通过设计变量的选取、目标函数和约束条件的确定,建立了圆柱齿轮减速器设计的数学模型。编写了优化设计程序,通过在计算机上运行和计算,得出优化设计各参数的大小。从理论上对圆柱齿轮减速器的结构进行了分析并作了常规设计,并对其它的一些附件进行了相应的设计,设计完毕,对其齿面、齿根弯曲强度进行校核,结果满足要求。结果表明,采用优化设计方法后,在满足强度要求的前提下,减速器的尺寸大大降低了,减少了用材及成本,提高了设计效率和质量。
关键词:圆柱齿轮减速器 优化设计 惩罚函数法 中心距 常规设计
Abstract:Reducer is a transmission device which is widely found in mechanical equipment. The main characteristics of it is large power transmission、manufacture simple、easy maintenance and long life. Traditionally, in order to get satisfied design data of reducer, you must cut and try again and again. Although this design can satisfy conditions given. Proved by the practice, according to the traditional design method to the design, most of them have room for improvement, it is not optimal.
In this article we will two-grade helical cylindrical gear redactor conduct optimal design . Taking account the minimum distance of center into the goal, penalty function used in this method . In this paper, by the way of selecting design variable , setting up goal function and restriction condition , the mathematical model of cylindrical gear reducer is established . The preparation of the optimal design program , run by the computer and calculating the optimal design parameters . The structure of the gear reducer is analyzed and made conventional design in theory, and some other accessories for the corresponding design , which proved reasonable for the the checking of Tooth surface and tooth root bending strength after the designation completed . The results show that the optimal design methods , strength requirements are met under the premise of the size reducer greatly reduced, reducing the timber and the cost , improve the design efficiency and quality.
Key words: Helical Cylindrical Gear Redactor optimal design penalty function Center distance Conventional Design
1 序言