基于STM32微控制器的旋转式倒立摆控制系统设计
摘要:随着自动化技术的不断发展,控制理论已经应用于各个领域。特别是上世纪80年代之后,人工智能、航空航天技术的迅猛发展为智能控制、非线性控制技术的研究提供了动力。但是由于前沿领域的设备过于昂贵,许多控制技术的研究者因无法购买设备进行实验而最终只能放弃研究。于是,就迫切地需要一个实验模型去代替昂贵的实验设备。这样,倒立摆系统就应用而生并且因其具有非线性、多变量、固有的不稳定性特点以及其低廉的价格而成为理想的实验平台。
本设计是基于STM32微控制器的旋转式倒立摆控制系统,运用摆杆的起摆与平衡的控制算法来解决其不稳定、非线性的问题。设计的控制系统包括一个微控制器、两个编码器、一个电机、倒立摆支架以及配套的电路。本设计最核心的部分是倒立摆的起摆与平衡控制算法的设计。通过对算法的设计和调试。我们能够克服倒立摆系统本身所具有的滞后性、不稳定性和非线性问题。因为倒立摆系统的特性与火箭发射和机器人的系统具有相似性,所以倒立摆算法的研究对于火箭发射和机器人系统的应用具有重要的借鉴意义。
关键字:倒立摆系统;实验平台;起摆和平衡控制算法
Control System Design of Rotary Inverted Pendulum Based on the Core of STM32
Abstract: With the continuous development of automation, Control theory has been being applied in various fields. Especially since 80’s last century, the rapid development of artificial intelligence and aerospace have motivated the massive research to improve the intelligent control technology and nonlinear control technology. But the research equipment applied in the frontier field was so expensive that many researchers who were dedicated into control technology could only give up the research for intelligent control and aerospace control at last because of the inability to purchase such equipment. As a result, an experimental model able to replace expensive laboratory equipment was urgently needed. In this way, the inverted pendulum system was designed and became an perfect experimental platform due to its nonlinear, multi-variable, inherent instability and its low price.
本设计是基于STM32微控制器的旋转式倒立摆控制系统,根据研究摆杆的起摆与平衡的控制算法来解决其不稳定、非线性的问题。设计的控制系统包括一个微控制器、两个编码器、一个电机、倒立摆支架以及配套的电路。本设计最核心的部分是倒立摆的起摆与平衡控制算法的设计。通过对算法的设计和调试克服倒立摆系统本身所具有的滞后性、不稳定性和非线性问题。因为倒立摆系统的特性与火箭发射和机器人的系统具有相似性,所以倒立摆算法的研究对于火箭发射和机器人系统的应用具有重要的借鉴意义。
This design is the rotary inverted pendulum control system based on the core of STM32, using swing-up and balance control algorithm to solve its unstable and nonlinear control problem. The control system design consists of a microcontroller, two encoders, a motor, the load gear of inverted pendulum and matching circuit. The most important part of this design is the programming of swing-up and balance control algorithm of the inverted pendulum. Through writing and debugging the code, we can solve the hysteresis, instability and nonlinear problem of the inverted pendulum system. Because the control characteristics of the inverted pendulum system is similar to the system of the rocket and robot, the research of the inverted pendulum has important significance for the study of the rocket and robot system.
Keywords: Inverted pendulum system; Experimental platform; Control algorithm of swing-up and balance
目 录